Sharif Quantum Information Group

Topological Quantum Computation-Part I

Objectives

- To understand the basic ideas of:

Topological Qubit

Topological Order
Kitaev Model

Topological Quantum Computation

Classical Bits

Quantum Bits

Classical Bits Have

Four

Very Good Properties

1- Bits are Macroscopic Objects

2- Bits can be cloned

3- Errors are discrete

4- Bits can be observed

$010 \longrightarrow 000$

And corrected

Qubits are exactly the opposite

They are microscopic

They cannot be cloned

Quantum Errors are continuous

They cannot be observed

Topological Qubits

Merging the good features of both

$$
a|\overline{0}\rangle+b|\overline{1}\rangle
$$

Ising Model

$$
H=-\sum_{\langle, j,\rangle} z_{i} z_{j}
$$

$$
|\overline{0}\rangle=|\uparrow \uparrow \uparrow \ldots \uparrow \uparrow \uparrow\rangle \quad|\overline{1}\rangle=|\downarrow \downarrow \downarrow \ldots . \downarrow \downarrow \downarrow\rangle
$$

Local Order

But local order cannot produce a topological qubit!

Local order is extremely fragile

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|0000\rangle+|1111\rangle)
$$

$$
|W\rangle=\frac{1}{2}(|1000\rangle+|0100\rangle+|0010\rangle+|0001\rangle)
$$

$$
\left|W_{1}\right\rangle=|1000\rangle \quad\left|W_{0}\right\rangle=\frac{1}{\sqrt{3}}(|100\rangle+|010\rangle+|001\rangle)
$$

$$
|W\rangle=\frac{1}{\sqrt{N}}(|100 \ldots .000\rangle+|010 \ldots . .000\rangle+|001 \ldots . .000\rangle+\ldots \ldots+|00 \ldots .001\rangle)
$$

$$
\frac{N-1}{N}
$$

$$
\left|W_{0}\right\rangle=\frac{1}{\sqrt{N-1}}(|100 \ldots . \ldots 0\rangle+|010 \ldots . \ldots 0\rangle+|001 \ldots . \ldots 0\rangle+\ldots . .+|00 \ldots . .01\rangle)
$$

What we want?

Degenerate ground state

Existence of Gap

Not locally distinguishable

Robust to perturbations

A system with degenerate ground state

$$
\left|\psi_{0}\right\rangle
$$

which cannot be distinguished, by any local observable!

$$
\left\langle\psi_{0}\right| K\left|\psi_{0}\right\rangle=\left\langle\psi_{1}\right| K\left|\psi_{1}\right\rangle
$$

How to make a topological model

$$
K_{i}^{2}= \pm I
$$

$$
K_{i}^{2}=I
$$

Stabilizers

$$
\left[K_{i}, K_{j}\right]=0
$$

The Hamiltonian

$$
H=-K_{1}-K_{2}-\ldots \ldots-K_{M}
$$

All the local operators

$$
\pi \square
$$

A ground state

The order of degeneracy

$$
\operatorname{Dim}(H)=2^{N}
$$

$$
\text { Degeneracy }=\frac{2^{N}}{2^{M}}=2^{N-M}
$$

Kitaev Model

Notations

$$
\begin{aligned}
& A_{s}=x_{1} x_{2} x_{3} x_{4} \\
& A_{s}^{2}=I \\
& \prod A_{s}=I
\end{aligned}
$$

Number of vertices=N

Number of links=2N

Number of independent A's $=\mathrm{N}-1$

$$
\begin{aligned}
& B_{p}^{2}=I \\
& \prod_{n} B_{p}=I
\end{aligned}
$$

Number of faces $=\mathrm{N}$
Number of Independent B's = N-1

$$
\begin{gathered}
{\left[A_{s}, B_{p}\right]=0} \\
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
\end{gathered}
$$

$$
\text { Degeneracy }=\frac{2^{2 N}}{2^{2 N-2}}=4
$$

The ground state

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

$$
A_{s}|\phi\rangle=|\phi\rangle \quad B_{p}|\phi\rangle=|\phi\rangle
$$

How the ground state looks like?
$|\Omega\rangle=|+\rangle^{\otimes N}$

$$
\left|\varphi_{0}\right\rangle=\prod_{p}\left(1+B_{p}\right)|\Omega\rangle
$$

$$
A_{s}|\Omega\rangle=|\Omega\rangle
$$

$$
\oplus
$$

$$
B_{p}|\Omega\rangle \neq|\Omega\rangle
$$

String operators which create degenerate states

Four ground states

$\left|\phi_{00}\right\rangle$

$$
\left|\phi_{10}\right\rangle=X_{1}\left|\phi_{00}\right\rangle
$$

$$
\left|\phi_{01}\right\rangle=X_{2}\left|\phi_{00}\right\rangle
$$

$$
\left|\phi_{11}\right\rangle=X_{1} X_{2}\left|\phi_{00}\right\rangle
$$

$\left|\phi_{11}\right\rangle=X_{1} X_{2}\left|\phi_{00}\right\rangle$

-

Local operators cannot distinguish these four ground states.

$$
\left\langle\phi_{10}\right| O\left|\phi_{10}\right\rangle=\left\langle\phi_{00}\right| X_{1} O X_{1}\left|\phi_{00}\right\rangle=\left\langle\phi_{00}\right| O\left|\phi_{00}\right\rangle
$$

What happens in this case?

X_{1}

X_{1}

Sine the operator is local, we can deform the line:
Again: $\quad X_{1} O=O X_{1}$

String operators which distinguish the states!

String operators which distinguish the states!

$$
\begin{aligned}
& Z_{1}=\prod_{i \in C_{2}} x_{i} \\
& {\left[Z_{1}, H\right]=0}
\end{aligned}
$$

Summary

$$
Z_{1} X_{1}=-X_{1} Z_{1}
$$

$$
Z_{2} X_{2}=-X_{2} Z_{2}
$$

$$
Z_{1} X_{2}=X_{2} Z_{1}
$$

$$
Z_{2} X_{1}=X_{1} Z_{2}
$$

$$
\left|\phi_{00}\right\rangle \quad\left|\phi_{10}\right\rangle=X_{1}\left|\phi_{00}\right\rangle \quad\left|\phi_{01}\right\rangle=X_{2}\left|\phi_{00}\right\rangle \quad\left|\phi_{11}\right\rangle=X_{1} X_{2}\left|\phi_{00}\right\rangle
$$

$$
\begin{array}{llll}
Z_{1} & 1 & -1 & 1 \\
Z_{2} & 1 & 1 & -1
\end{array}
$$

Why degeneracy is not removed by local perturbations?

$$
\Delta E_{\alpha}=\left\langle\psi_{\alpha}\right| \sum_{i} O_{i}\left|\psi_{\alpha}\right\rangle
$$

$$
\Delta E_{\alpha}=\Delta E_{\beta}
$$

Where is Topology?

Degeneracy depends on topology

Excited States: 1- Electric Anyons.

Excited States: 1- Electric Anyons.

Each Anyon has an energy of
2 units.

Anyons are created in pairs.

The energy of the pair doesn't depend on the path connecting them.

Another interpretation of String Operators

So by creating two electric Anyons,

Moving them across the Torus,

And annihilating them in the end,

We can implement a X gate on either of the qubits.

Excited States: Magnetic Anyons

Another interoperation of string operators

So by creating two Magnetic Anyons,

Moving them across the Torus,

And annihilating them in the end,

We can implement a Z gate on either of the qubits.

Electric excitations behave as Bosons with respect to each other.

Magnetic excitations behave as Bosons with respect to each other.

Why These are Anyons?

But Electric and Magnetic excitations behave as Fermions with respect to each other.

$e_{e}^{e} m=-e_{m}^{e}$

But e and m are not identical particles.

The pair (em) behaves as a fermion.

Fusion Rules of Toric Code Anyons

$$
\begin{aligned}
& \{1, e, m, \epsilon\} \\
& 1 \times a=a \\
& e \times e=1 \quad m \times m=1 \\
& e \times m=\epsilon \\
& \epsilon \times e=m \\
& \epsilon \times m=e
\end{aligned}
$$

So we can do simple,

X, Z and Y gates

in a fault-tolerant way.

Unfortunately
 the Abelian Models are not Universal.

We have to consider Non-Abelian Models.

Non-Abelian Anyons

End of part I

