

Sharif Quantum Information Group

Topological Quantum Computation-Part I

Objectives

• To understand the basic ideas of:

Topological Qubit

Topological Order

Kitaev Model

Topological Quantum Computation

Classical Bits

Quantum Bits

$\left| \begin{array}{c} \bullet \end{array} \right\rangle = a \left| \begin{array}{c} \bullet \end{array} \right\rangle + b \left| \begin{array}{c} \bullet \end{array} \right\rangle$

Classical Bits Have

Very Good Properties

1- Bits are Macroscopic Objects

2- Bits can be cloned

3- Errors are discrete

4- Bits can be observed

$010 \longrightarrow 000$

And corrected

Qubits are exactly the opposite

They are microscopic

They cannot be cloned

 $|\psi\rangle\otimes|0\rangle\rightarrow|\psi\rangle\otimes|\psi\rangle$

Quantum Errors are continuous

 $\left| \bigoplus \right\rangle = a \left| \bigoplus \right\rangle + b \left| \bigoplus \right\rangle \longrightarrow \left| \bigoplus \right\rangle = a' \left| \bigoplus \right\rangle + b' \left| \bigoplus \right\rangle$

They cannot be observed

Topological Qubits

Merging the good features of both

$a\left|\overline{0}\right\rangle + b\left|\overline{1}\right\rangle$

Ising Model

 $\left|\overline{0}\right\rangle = \left|\uparrow\uparrow\uparrow\right\rangle \dots\uparrow\uparrow\uparrow\rangle$

 $\left|\overline{1}\right\rangle = \left|\downarrow\downarrow\downarrow\downarrow\ldots\downarrow\downarrow\downarrow\right\rangle$

Local Order

But local order cannot produce a topological qubit!

Local order is extremely fragile

$$|W\rangle = \frac{1}{2} (|1000\rangle + |0100\rangle + |0010\rangle + |0001\rangle)$$
$$\frac{1}{4} \qquad \qquad \frac{3}{4}$$
$$W_1\rangle = |1000\rangle \qquad |W_0\rangle = \frac{1}{\sqrt{3}} (|100\rangle + |010\rangle + |001\rangle)$$

$$|W\rangle = \frac{1}{\sqrt{N}} (|100....000\rangle + |010....000\rangle + |001....000\rangle ++ |00....001\rangle)$$

$$|W_0\rangle = \frac{1}{\sqrt{N-1}} (|100....00\rangle + |010....00\rangle + |001....00\rangle ++ |00....01\rangle)$$

What we want?

Degenerate ground state

Existence of Gap

Not locally distinguishable

Robust to perturbations

A system with degenerate ground state

which cannot be distinguished, by any local observable!

 $\langle \boldsymbol{\psi}_0 | \boldsymbol{K} | \boldsymbol{\psi}_0 \rangle = \langle \boldsymbol{\psi}_1 | \boldsymbol{K} | \boldsymbol{\psi}_1 \rangle$

How to make a topological model

 $K_i^2 = \pm I$

 $K_i | \psi_{\alpha} \rangle = | \psi_{\alpha} \rangle_{\kappa}$

Local Operator

 $\langle \boldsymbol{\psi}_{\alpha} | \boldsymbol{K}_{i} | \boldsymbol{\psi}_{\alpha} \rangle = 1$

A ground state

 $K_i^2 = I$

 $\begin{bmatrix} K_i & K_j \end{bmatrix} = 0$

Stabilizers

The Hamiltonian

All the local operators

$$H|\psi_{\alpha}\rangle = -M|\psi_{\alpha}\rangle$$

A ground state

The order of degeneracy

 $Dim(H) = 2^N$

$$Degeneracy = \frac{2^N}{2^M} = 2^{N-M}$$

Kitaev Model

Notations

 $z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \begin{cases} |0\rangle \\ |1\rangle \end{cases}$

 $z|+\rangle = |-\rangle$

 $x|0\rangle = |1\rangle$

 $x|1\rangle = |0\rangle$

 $z|-\rangle = |+\rangle$

Number of vertices=N

Number of links=2N

Dimension of Hilbert Space = 2^{2N}

Number of independent A's = N-1

$$Degeneracy = \frac{2^{2N}}{2^{N-1}} = 2^{N+1}$$

Number of faces = N

Number of Independent B's = N-1

 $\left[A_{s},B_{p}\right]=0$

 $H = -\sum A_s - \sum B_p$ p S

$$Degeneracy = \frac{2^{2N}}{2^{2N-2}} = 4$$

The ground state

 $H = -\sum A_s - \sum B_p$

How the ground state looks like?

$$\left|\varphi_{0}\right\rangle = \prod_{p} \left(1 + B_{p}\right) \left|\Omega\right\rangle$$

$$A_{s}|\Omega\rangle = |\Omega\rangle$$

String operators which create degenerate states

Four ground states

$|\phi_{00}\rangle$ $|\phi_{10}\rangle = X_1 |\phi_{00}\rangle$ $|\phi_{01}\rangle = X_2 |\phi_{00}\rangle$ $|\phi_{11}\rangle = X_1 X_2 |\phi_{00}\rangle$

Local operators cannot distinguish these four ground states.

The support of an arbitrary local operator

O = the local operator

It is obvious that $X_1 O = O X_1$

 $\langle \phi_{10} | O | \phi_{10} \rangle = \langle \phi_{00} | X_1 O X_1 | \phi_{00} \rangle = \langle \phi_{00} | O | \phi_{00} \rangle$

What happens in this case?

Sine the operator is local, we can deform the line:

Again: $X_1 O = O X_1$

String operators which distinguish the states!

String operators which distinguish the states!

 $Z_1 X_1 = -X_1 Z_1$

 $Z_2 X_2 = -X_2 Z_2$

 $Z_1 X_2 = X_2 Z_1$

 $Z_2 X_1 = X_1 Z_2$

 $|\phi_{00}\rangle$ $|\phi_{10}\rangle = X_1 |\phi_{00}\rangle$ $|\phi_{01}\rangle = X_2 |\phi_{00}\rangle$ $|\phi_{11}\rangle = X_1 X_2 |\phi_{00}\rangle$

48

Why degeneracy is not removed by local perturbations?

 $\Delta E_{\alpha} = \left\langle \psi_{\alpha} \right| \sum_{i} O_{i} \left| \psi_{\alpha} \right\rangle$

$$\Delta E_{\alpha} = \Delta E_{\beta}$$

Where is Topology?

Degeneracy depends on topology

Excited States: 1- Electric Anyons.

Excited States: 1- Electric Anyons.

Each Anyon has an energy of

2 units.

Anyons are created in pairs.

The energy of the pair doesn't depend on the path connecting them.

Another interpretation of String Operators

So by creating two electric Anyons,

Moving them across the Torus,

And annihilating them in the end,

We can implement a X gate on either of the qubits.

Excited States: Magnetic Anyons

Another interoperation of string operators

So by creating two Magnetic Anyons,

Moving them across the Torus,

And annihilating them in the end,

We can implement a Z gate on either of the qubits.

Electric excitations behave as Bosons with respect to each other.

Magnetic excitations behave as Bosons with respect to each other.

Why These are Anyons?

But Electric and Magnetic excitations behave as Fermions with respect to each other.

But e and m are not identical particles.

The pair (em) behaves as a fermion.

Fusion Rules of Toric Code Anyons

 $\{\overline{1, e, m, e}\}$

 $1 \times a = a$

 $e \times e = 1$ $m \times m = 1$

 $\overline{e \times m} = \epsilon$

 $\epsilon \times e = m$ $\epsilon \times m = e$

So we can do simple,

X, Z and Y gates

in a fault-tolerant way.

Unfortunately the Abelian Models are not Universal.

We have to consider Non-Abelian Models.

Non-Abelian Anyons

$$|\psi_i\rangle \rightarrow U_{ij}|\psi_j\rangle$$

End of part l